MySQL优化器索引选择迷思。
高鹏(八怪)对本文亦有贡献。
1. 问题描述
群友提出问题,表里有两个列c1、c2,分别为INT、VARCHAR类型,且分别创建了unique key。
SQL查询的条件是 WHERE c1 = ? AND c2 = ?,用EXPLAIN查看执行计划,发现优化器优先选择了VARCHAR类型的c2列索引。
他表示很不理解,难道不应该选择看起来代价更小的INT类型的c1列吗?
2. 问题复现
创建测试表t1:
- [root@yejr.run]> CREATE TABLE `t1` (
- `c1` int NOT NULL AUTO_INCREMENT,
- `c2` int unsigned NOT NULL,
- `c3` varchar(20) NOT NULL,
- `c4` varchar(20) NOT NULL,
- PRIMARY KEY (`c1`),
- UNIQUE KEY `k3` (`c3`),
- UNIQUE KEY `k2` (`c2`)
- ) ENGINE=InnoDB;
复制代码 利用 mysql_random_data_load 写入一万行数据:
- mysql_random_data_load -h127.0.0.1 -uX -pX yejr t1 10000
复制代码 查看执行计划:
- [root@yejr.run]> EXPLAIN SELECT * FROM t1 WHERE
- c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G
- *************************** 1. row ***************************
- id: 1
- select_type: SIMPLE
- table: t1
- partitions: NULL
- type: const
- possible_keys: k3,k2
- key: k3
- key_len: 82
- ref: const
- rows: 1
- filtered: 100.00
- Extra: NULL
复制代码 可以看到优化器的确选择了 k3 索引,而非"预期"的 k2 索引,这是为什么呢?
3. 问题分析
其实原因很简单粗暴:优化器认为这两个索引选择的代价都是一样的,只是优先选中排在前面的那个索引而已。
再建一个相同的表 t2,只不过把 k2、k3 的索引创建顺序对调下:
- [root@yejr.run]> CREATE TABLE `t2` (
- `c1` int NOT NULL AUTO_INCREMENT,
- `c2` int unsigned NOT NULL,
- `c3` varchar(20) NOT NULL,
- `c4` varchar(20) NOT NULL,
- PRIMARY KEY (`c1`),
- UNIQUE KEY `k2` (`c2`),
- UNIQUE KEY `k3` (`c3`)
- ) ENGINE=InnoDB;
复制代码 再查看执行计划:
- [root@yejr.run]> EXPLAIN SELECT * FROM t2 WHERE
- c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G
- *************************** 1. row ***************************
- id: 1
- select_type: SIMPLE
- table: t1
- partitions: NULL
- type: const
- possible_keys: k2,k3
- key: k2
- key_len: 4
- ref: const
- rows: 1
- filtered: 100.00
- Extra: NULL
复制代码 我们利用 EXPLAIN ANALYZE 来查看下两次执行计划的代价对比:
- -- 查看t1表执行计划代价
- [root@yejr.run]> EXPLAIN ANALYZE SELECT * FROM t1 WHERE
- c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G
- *************************** 1. row ***************************
- EXPLAIN: -> Rows fetched before execution (cost=0.00..0.00 rows=1) (actual time=0.000..0.000 rows=1 loops=1)
- -- 查看t2表执行计划代价
- [root@yejr.run]> EXPLAIN ANALYZE SELECT * FROM t2 WHERE c2 = 1755950419 AND c3 = 'MichaelaAnderson'\G
- *************************** 1. row ***************************
- EXPLAIN: -> Rows fetched before execution (cost=0.00..0.00 rows=1) (actual time=0.000..0.000 rows=1 loops=1)
复制代码 可以看到,很明显代价都是一样的。
再利用 OPTIMIZE_TRACE 查看执行计划,也能看到两个SQL的代价是一样的:
- ...
- {
- "rows_estimation": [
- {
- "table": "`t1`",
- "rows": 1,
- "cost": 1,
- "table_type": "const",
- "empty": false
- }
- ]
- },
- ...
复制代码 所以,优化器认为选择哪个索引都是一样的,就看哪个索引排序更靠前。
从执行SELECT时的debug trace结果也能佐证:
- -- 1、 T1表,k3索引在前面
- PRIMARY KEY (`c1`),
- UNIQUE KEY `k3` (`c3`),
- UNIQUE KEY `k2` (`c2`)
- T@2: | | | | | | | | opt: (null): starting struct
- T@2: | | | | | | | | opt: table: "`t1`"
- T@2: | | | | | | | | opt: field: "c3" (C3在前面,因此最后使用k3)
- T@2: | | | | | | | | >convert_string
- T@2: | | | | | | | | | >alloc_root
- T@2: | | | | | | | | | | enter: root: 0x40a8068
- T@2: | | | | | | | | | | exit: ptr: 0x4b41ab0
- T@2: | | | | | | | | | <alloc_root 304
- T@2: | | | | | | | | <convert_string 2610
- T@2: | | | | | | | | opt: equals: "'Louise Garrett'"
- T@2: | | | | | | | | opt: null_rejecting: 0
- T@2: | | | | | | | | opt: (null): ending struct
- T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
- T@2: | | | | | | | | opt: (null): starting struct
- T@2: | | | | | | | | opt: table: "`t1`"
- T@2: | | | | | | | | opt: field: "c2"
- T@2: | | | | | | | | opt: equals: "22896242"
- T@2: | | | | | | | | opt: null_rejecting: 0
- T@2: | | | | | | | | opt: null_rejecting: 0
- T@2: | | | | | | | | opt: (null): ending struct
- T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
- T@2: | | | | | | | | opt: (null): starting struct
- T@2: | | | | | | | | opt: table: "`t1`"
- T@2: | | | | | | | | opt: field: "c2"
- T@2: | | | | | | | | opt: equals: "22896242"
- T@2: | | | | | | | | opt: null_rejecting: 0
- T@2: | | | | | | | | opt: (null): ending struct
- T@2: | | | | | | | | opt: ref_optimizer_key_uses: ending struct
- T@2: | | | | | | | | opt: (null): ending struct
- -- 2、 T2表,k2索引在前面
- PRIMARY KEY (`c1`),
- UNIQUE KEY `k2` (`c2`),
- UNIQUE KEY `k3` (`c3`)
- T@2: | | | | | | | | opt: (null): starting struct
- T@2: | | | | | | | | opt: table: "`t2`"
- T@2: | | | | | | | | opt: field: "c2" (C2在前面因此使用k2索引)
- T@2: | | | | | | | | opt: equals: "22896242"
- T@2: | | | | | | | | opt: null_rejecting: 0
- T@2: | | | | | | | | opt: (null): ending struct
- T@2: | | | | | | | | opt: Key_use: optimize= 0 used_tables=0x0 ref_table_rows= 18446744073709551615 keypart_map= 1
- T@2: | | | | | | | | opt: (null): starting struct
- T@2: | | | | | | | | opt: table: "`t2`"
- T@2: | | | | | | | | opt: field: "c3"
- T@2: | | | | | | | | >convert_string
- T@2: | | | | | | | | | >alloc_root
- T@2: | | | | | | | | | | enter: root: 0x40a8068
- T@2: | | | | | | | | | | exit: ptr: 0x4b41ab0
- T@2: | | | | | | | | | <alloc_root 304
- T@2: | | | | | | | | <convert_string 2610
- T@2: | | | | | | | | opt: equals: "'Louise Garrett'"
- T@2: | | | | | | | | opt: null_rejecting: 0
- T@2: | | | | | | | | opt: (null): ending struct
- T@2: | | | | | | | | opt: ref_optimizer_key_uses: ending struct
- T@2: | | | | | | | | opt: (null): ending struct
复制代码 4. 问题延伸
到这里,我们不禁有疑问,这两个索引的代价真的是一样吗?
就让我们用 mysqlslap 来做个简单对比测试吧:
- -- 测试1:对c2列随机point select
- mysqlslap -hlocalhost -uroot -Smysql.sock --no-drop --create-schema X -i 3 --number-of-queries 1000000 -q "set @xid = cast(round(rand()*2147265929) as unsigned); select * from t1 where c2 = @xid" -c 8
- ...
- Average number of seconds to run all queries: 9.483 seconds
- ...
- -- 测试2:对c3列随机point select
- mysqlslap -hlocalhost -uroot -Smysql.sock --no-drop --create-schema X -i 3 --number-of-queries 1000000 -q "set @xid = concat('u',cast(round(rand()*2147265929) as unsigned)); select * from t1 where c3 = @xid" -c 8
- ...
- Average number of seconds to run all queries: 10.360 seconds
- ...
复制代码 可以看到,如果是走 c3 列索引,耗时会比走 c2 列索引多出来约 7% ~ 9%(在我的环境下测试的结果,不同环境、不同数据量可能也不同)。
看来,MySQL优化器还是有必要进一步提高的哟 :)
测试使用版本:GreatSQL 8.0.25(MySQL 5.6.39结果亦是如此)。
Enjoy GreatSQL
|