||
本章使用的测试数据库为GreatSQL8.0.25版本
(Wed Aug 3 16:17:03 2022)[root@GreatSQL][(none)]>select version();+-----------+| version() |+-----------+| 8.0.25-16 |+-----------+1 row in set (0.00 sec)
我们在设计数据表的时候,要考虑很多问题。
比如:
现实情况中,面临的场景:
当数据库运行了一段时间之后,我们才发现数据表设计的有问题。重新调整数据表的结构,就需要做数据迁移还有可能影响程序的业务逻辑,以及网站正常的访问。
如果是糟糕的数据库设计可能会造成以下问题:
良好的数据库设计则有以下优点:
总之,开始设置数据库的时候,我们就需要重视数据表的设计。为了建立元余较小、结构合理的数据库,设计数据库时必须遵循一定的规则。
在关系型数据库中,关于数据表设计的基本原则、规则就称为范式。可以理解为,一张数据表的设计结构需要满足的某种设计标准的 级别 。要想设计一个结构合理的关系型数据库,必须满足一定的范式。
范式的英文名称是Normal Form,简称NF
。它是英国人E.F.Codd在上个世纪70年代提出关系数据库模型后总结出来的。范式是关系数据库理论的基础,也是我们在设计数据库结构过程中所要遵循的规则和指导方法。
目前关系型数据库有六种常见范式,按照范式级别,从低到高分别是
数据库的范式设计越高阶,几余度就越低,同时高阶的范式一定符合低阶范式的要求,满足最低要求的范式是第一范式(1NF)。在第一范式的基础上进一步满足更多规范要求的称为第二范式(2NF),其余范式以次类推。
一般来说,在关系型数据库设计中,最高也就遵循到BCNF
,普遍还是3NF
。但也不绝对,有时候为了提高某些查询性能,我们还需要破坏范式规则,也就是反规范化
在这里插入图片描述
范式的定义会使用到主键和候选键,数据库中的键(Key)由一个或者多个属性组成。数据表中常用的几种键和属性的定义:
通常,我们也将候选键称之为“码”
,把主键也称为“主码”
。因为键可能是由多个属性组成的,针对单个属性,我们还可以用主属性和非主属性来进行区分。
举例,这里有两个表:
球员表(player) : 球员编号 | 姓名 | 身份证号 | 年龄 | 球队编号
球队表(team) : 球队编号 | 主教练 | 球队所在地
第一范式主要是确保数据表中每个字段的值必须具有原子性
,也就是说数据表中每个字段的值为不可再次拆分
的最小数据单元。
我们在设计某个字段的时候,对于字段×来说,不能把字段×拆分成字段X-1和字段X-2。事实上,任何的DBMS都会满足第一范式的要求,不会将字段进行拆分。
第二范式要求,在满足第一范式的基础上,还要满足数据表里的每一条数据记录,都是可唯一标识的。而且所有非主键字段,都必须完全依赖主键,不能只依赖主键的一部分
。如果知道主键的所有属性的值,就可以检索到任何元组(行)的任何属性的任何值。(要求中的主键,其实可以拓展替换为候选键)。
举例1:
成绩表 (学号,课程号,成绩)关系中,(学号,课程号)可以决定成绩,但是学号不能决定成绩,课程号也不能决定成
绩,所以“(学号,课程号)→成绩”就是 完全依赖关系 。
举例2:
比赛表 player_game
,里面包含球员编号、姓名、年龄、比赛编号、比赛时间和比赛场地等属性,这
里候选键和主键都为(球员编号,比赛编号),我们可以通过候选键(或主键)来决定如下的关系:
(球员编号, 比赛编号) → (姓名, 年龄, 比赛时间, 比赛场地,得分)
但是这个数据表不满足第二范式,因为数据表中的字段之间还存在着如下的对应关系:
# 姓名和年龄部分依赖球员编号。(球员编号) → (姓名,年龄)# 比赛时间, 比赛场地部分依赖(球员编号, 比赛编号)。(比赛编号) → (比赛时间, 比赛场地)
对于非主属性来说,并非完全依赖候选键。这样会产生怎样的问题呢?
1. 数据冗余
: 如果一个球员可以参加 m 场比赛,那么球员的姓名和年龄就重复了 m-1 次。一个比赛
也可能会有 n 个球员参加,比赛的时间和地点就重复了 n-1 次。
2. 插入异常
: 如果我们想要添加一场新的比赛,但是这时还没有确定参加的球员都有谁,那么就没
法插入。
3. 删除异常
: 如果我要删除某个球员编号,如果没有单独保存比赛表的话,就会同时把比赛信息删
除掉。
4. 更新异常
: 如果我们调整了某个比赛的时间,那么数据表中所有这个比赛的时间都需要进行调
整,否则就会出现一场比赛时间不同的情况。
为了避免出现上述的情况,我们可以把球员比赛表设计为下面的三张表。
表名 | 属性(字段) |
---|---|
球员 player 表 | 球员编号、姓名和年龄等属性 |
比赛 game 表 | 比赛编号、比赛时间和比赛场地等属性 |
球员比赛关系 player_game 表 | 球员编号、比赛编号和得分等属性 |
这样的话,每张数据表都符合第二范式,也就避免了异常情况的发生。
1NF
告诉我们字段属性需要是原子性的,而2NF
告诉我们一张表就是一个独立的对象,一张表只表达一个意思
小结: 第二范式(2NF)要求实体的属性完全依赖主关键字。如果存在不完全依赖,那么这个属性和主关键字的这一部分应该分离出来形成一个新的实体,新实体与元实体之间是一对多的关系。
第三范式是在第二范式的基础上,确保数据表中的每一个非主键字段都和主键字段直接相关,也就是说,要求数据表中的所有非主键字段不能依赖于其他非主键字段。(即,不能存在非主属性A依赖于非王属性B,非士属任B依赖于主键C的情况,即存在“A→B一C"的决定关系)通俗地讲,该规则的意思是所有非主键属性
之间不能有依赖关系,必须相互独立
。
这里的主键可以拓展为候选键。
举例1:
部门信息表
:每个部门有部门编号(dept_id)、部门名称、部门简介等信息。
员工信息表
:每个员工有员工编号、姓名、部门编号。列出部门编号后就不能再将部门名称、部门简介等与部门有关的信息再加入员工信息表中。
如果不存在部门信息表,则根据第三范式(3NF)也应该构建它,否则就会有大量的数据冗余。
关于数据表的设计,有三个范式要遵循。
(1)第一范式(1NF),确保每列保持原子性
数据库的每一列都是不可分割的原子数据项,不可再分的最小数据单元,而不能是集合、数组、记录等非原子数据项。
(2)第二范式(2NF),确保每列都和主键完全依赖
尤其在复合主键的情况下,非主键部分不应该依赖于部分主键。
(3)第三范式(3NF)确保每列都和主键列直接相关
,而不是间接相关
范式的优点数据的标准化有助于消除数据库中的数据冗余
,第三范式(3NF)通常被认为在性能、扩展性和数据完整性方面达到了最好的平衡。
范式的缺点 范式的使用,可能降低查询的效率
。因为范式等级越高,设计出来的数据表就越多、越精细,数据的冗余度就越低,进行数据查询的时候就可能需要关联多张表
,这不但代价昂贵,也可能使一些索引策略无效
。
范式只是提出了设计的标准,实际上设计数据表时,未必一定要符合这些标准。开发中,我们会出现为了性能和读取效率违反范式化的原则,通过增加少量的冗余
或重复的数据来提高数据库的读性能,减少关联查询,join表的次数,实现空间换取时间的目的。因此在实际的设计过程中要理论结合实际,灵活运用。
范式本身没有优劣之分,只有适用场景不同。没有完美的设计,只有合适的设计,我们在数据表的设计中,还需要根据需求将范式和反范式混合使用。
有的时候不能简单按照规范要求设计数据表,因为有的数据看似穴余,其实对业务来说十分重要。这个时候,我们就要遵循业务优先
的原则,首先满足业务需求,再尽量减少冗余。
如果数据库中的数据量比较大,系统的UV和PV访问频次比较高,则完全按照MySQL的三大范式设计数据表,读数据时会产生大量的关联查询,在一定程度上会影响数据库的读性能。如果我们想对查询效率进行优化,反范式化也是一种优化思路。此时,可以通过在数据表中增加冗余字段
来提高数据库的读性能。
规范化 vs 性能
为满足某种商业目标 , 数据库性能比规范化数据库更重要
在数据规范化的同时 , 要综合考虑数据库的性能
通过在给定的表中添加额外的字段,以大量减少需要从中搜索信息所需的时间
通过在给定的表中插入计算列,以方便查询
举例1:
员工的信息存储在 employees 表 中,部门信息存储在 departments 表 中。通过 employees 表中的department_id字段与 departments 表建立关联关系。如果要查询一个员工所在部门的名称:
select employee_id,department_namefrom employees e join departments don e.department_id = d.department_id;
如果经常需要进行这个操作,连接查询就会浪费很多时间。可以在 employees 表中增加一个冗余字段department_name,这样就不用每次都进行连接操作了。
当冗余信息有价值或者能 大幅度提高查询效率 的时候,我们才会采取反范式的优化。
1. 增加冗余字段的建议
增加冗余字段一定要符合如下两个条件。只有满足这两个条件,才可以考虑增加冗余字段。
2. 历史快照、历史数据的需要
在现实生活中,我们经常需要一些冗余信息,比如订单中的收货人信息,包括姓名、电话和地址等。每次发生的 订单收货信息 都属于 历史快照 ,需要进行保存,但用户可以随时修改自己的信息,这时保存这些冗余信息是非常有必要的。反范式优化也常用在 数据仓库 的设计中,因为数据仓库通常 存储历史数据 ,对增删改的实时性要求不强,对历史数据的分析需求强。这时适当允许数据的冗余度,更方便进行数据分析。
人们在3NF的基础上进行了改进,提出了巴斯范式(BCNF) ,也叫做巴斯-科德范式(Boyce-Codd NormalForm) 。BCNF被认为没有新的设计规范加入,只是对第三范式中设计规范要求更强,使得数据库穴余度更小。所以,称为是修正的第三范式
,或扩充的第三范式
,BCNF不被称为第四范式。
若一个关系达到了第三范式,并且它只有一个候选键,或者它的每个候选键都是单属性,则该关系自然达到BC范式
一般来说,一个数据库设计符合3NF或BCNF就可以了。
举例如下:
在这个表中,一个仓库只有一个管理员,同时一个管理员也只管理一个仓库。我们先来梳理下这些属性之间的依赖关系。
仓库名决定了管理员,管理员也决定了仓库名,同时(仓库名,物品名)的属性集合可以决定数量这个属性。这样,我们就可以找到数据表的候选键。
候选键:是(管理员,物品名)和(仓库名,物品名),然后我们从候选键中选择一个作为主键,比如(仓库名,物品名)。
主属性:包含在任一候选键中的属性,也就是仓库名,管理员和物品名。
非主属性:数量这个属性。
如何判断一张表的范式呢?我们需要根据范式的等级,从低到高来进行判断。
首先,数据表每个属性都是原子性的,符合1NF的要求;
其次,数据表中非主属性“数量“都与候选键全部依赖,(仓库名,物品名)决定数量,(管理员,物品名)决定数量。因此,数据表符合2NF的要求;
最后,数据表中的非主属性,不传递依赖于候选键。因此符合3NF的要求。
既然数据表已经符合了3NF的要求,是不是就不存在问题了呢?我们来看下面的情况:
你能看到,即便数据表符合3NF的要求,同样可能存在插入,更新和删除数据的异常情况。
首先我们需要确认造成异常的原因:主属性仓库名对于候选键(管理员,物品名)是部分依赖的关系,这样就有可能导致上面的异常情况。因此引入BCNF,它在3NF的基础上消除了主属性对候选键的部分依赖或者传递依赖关系
。
仓库表
:(仓库名,管理员)库存表
:(仓库名,物品名,数量)
这样就不存在主属性对于候选键的部分依赖或传递依赖,上面数据表的设计就符合BCNF。
多值依赖的概念:
第四范式即在满足巴斯-科德范式(BCNF)的基础上,消除非平凡且非函数依赖的多值依赖(即把同一表内的多对多关系删除)。
举例1: 职工表(职工编号,职工孩子姓名,职工选修课程)。
在这个表中,同一个职工可能会有多个职工孩子姓名。同样,同一个职工也可能会有多个职工选修课程,即这字在着多值事实,不符合第四范式。
如果要符合第四范式,只需要将上表分为两个表,使它们只有一个多值事实,例如:职工表一(职工编号,职工孩子姓名),职工表二(职工编号,职工选修课程),两个表都只有一个多值事实,所以符合第四范式。
除了第四范式外,我们还有更高级的第五范式(又称完美范式)和域键范式(DKNF)。
在满足第四范式(4NF)的基础上,消除不是由候选键所蕴含的连接依赖。如果关系模式R中的每一个连接依赖均由R的候选键所隐含,则称此关系模式符合第五范式。
函数依赖是多值依赖的一种特殊的情况,而多值依赖实际上是连接依赖的一种特殊情况。但连接依赖不像函数依赖和多值依赖可以由 语义直接导出 ,而是在 关系连接运算 时才反映出来。存在连接依赖的关系模式仍可能遇到数据冗余及插入、修改、删除异常等问题。
第五范式处理的是 无损连接问题 ,这个范式基本 没有实际意义 ,因为无损连接很少出现,而且难以察觉。而域键范式试图定义一个 终极范式 ,该范式考虑所有的依赖和约束类型,但是实用价值也是最小的,只存在理论研究中。
其实,ER模型就是一个这样的工具。ER模型也叫作实体关系模型,是用来描述现实生活中客观存在的事物、事物的属性,以及事物之间关系的一种数据模型。在开发基于数据库的信息系统的设计阶段,通常使用ER模型来描述信息需求和信息特性,帮助我们理清业务逻辑,从而设计出优秀的数据库。
ER 模型中有三个要素,分别是实体、属性和关系
实体
,可以看做是数据对象,往往对应于现实生活中的真实存在的个体。在 ER 模型中,用 矩形 来表示。实体分为两类,分别是 强实体 和 弱实体 。强实体是指不依赖于其他实体的实体;弱实体是指对另一个实体有很强的依赖关系的实体。
属性
,则是指实体的特性。比如超市的地址、联系电话、员工数等。在 ER 模型中用 椭圆形 来表示。
关系
,则是指实体之间的联系。比如超市把商品卖给顾客,就是一种超市与顾客之间的联系。在 ER 模型中用 菱形 来表示。
注意:实体和属性不容易区分。这里提供一个原则:我们要从系统整体的角度出发去看,可以独立存在的是实体,不可再分的是属性 。也就是说,属性不能包含其他属性。
在 ER 模型的 3 个要素中,关系又可以分为 3 种类型,分别是 一对一、一对多、多对多。
一对一
:指实体之间的关系是一一对应的,比如个人与身份证信息之间的关系就是一对一的关系。一个人只能有一个身份证信息,一个身份证信息也只属于一个人。
一对多
:指一边的实体通过关系,可以对应多个另外一边的实体。相反,另外一边的实体通过这个关系,则只能对应唯一的一边的实体。比如说,我们新建一个班级表,而每个班级都有多个学生,每个学生则对应一个班级,班级对学生就是一对多的关系。
多对多
:指关系两边的实体都可以通过关系对应多个对方的实体。比如在进货模块中,供货商与超市之间的关系就是多对多的关系,一个供货商可以给多个超市供货,一个超市也可以从多个供货商那里采购商品。再比如一个选课表,有许多科目,每个科目有很多学生选,而每个学生又可以选择多个科目,这就是多对多的关系。
综合以上内容,总结出数据表设计的一般原则:“三少一多”
注意:这个原则并不是绝对的,有时候我们需要牺牲数据的冗余度来换取数据处理的效率。
合作电话:010-64087828
社区邮箱:greatsql@greatdb.com