§ Percona Toolkit 监控类

小贴士

$为 Linux 命令提示符、greatsql>为 GreatSQL 数据库提示符。

§ 监控类

在 Percona Toolkit 中性能类共有以下工具:

  • pt-deadlock-logger:提取和记录MySQL/GreatSQL死锁。
  • pt-fk-error-logger:提取和记录外键信息。
  • pt-mext:并行查看status样本信息。
  • pt-query-digest:分析查询日志,并产生报告。
  • pt-mongodb-summary:收集有关 MongoDB 集群的信息。
  • pt-pg-summary:收集有关 PostgreSQL 集群的信息。

§ pt-deadlock-logger

§ 概要

提取和记录 MySQL/GreatSQL 死锁。

用法

pt-deadlock-logger [OPTIONS] DSN
1

记录 MySQL/GreatSQL 死锁的信息。信息打印到 STDOUT ,也可以通过指定 --dest 保存到表中。除非指定 --run-time--iterations ,否则该工具将永远运行。

§ 选项

该工具所有选项如下:

参数 含义
--ask-pass 连接 MySQL/GreatSQL 时提示输入密码
--charset 字符集
--clear-deadlocks 创建一个小的死锁。
利用新产生的这个死锁刷新Engine InnoDB Status中的死锁信息,间接达到清除Engine InnoDB Status中大的死锁信息的结果,表名为percona_schema.clear_deadlocks这个表一定不能存在,脚本会自动创建表并在生成死锁后删除表,建表语句CREATE TABLE percona_schema.clear_deadlocks (a INT PRIMARY KEY) ENGINE=InnoDB
--columns 结果集字段
--config 读取这个逗号分隔的配置文件列表,如果指定,这必须是命令行上的第一个选项
--create-dest-table 创建--dest指定的表
--daemonize 后台运行
--database 连接到该数据库
--defaults-file 只从给定文件中读取 MySQL/GreatSQL 选项
--dest 用 DSN 的格式写存储死锁的位置,至少要指定库和表
--help 显示帮助
--host 连接到主机
--interval 检查死锁的频率,如果未指定,将默认永远运行
--iterations 检查死锁的次数,默认情况下,如果没指定,则为无限次数,退出的时间由--run-time来限制
--log 守护进程时将所有输出打印到此文件
--numeric-ip 将 IP 地址表示为整数。
--password 用于连接的密码
--pid 创建给定的 PID 文件
--port 用于连接的端口号
--quiet 不要死锁,仅将错误和警告打印到 STDERR
--run-time 退出前要跑多长时间。默认情况下永远运行,每 --interval 秒检查一次死锁。
--set-vars 在这个以逗号分隔的 variable=value 对列表中设置 MySQL/GreatSQL 变量
--socket 用于连接的套接字文件
--tab 使用制表符而不是空格来分隔列
--user 登录的用户
--version 显示版本
--[no]version-check 版本检查

§ 最佳实践

如果想存储 pt-deadlock-logger 提取的有关死锁的所有信息,建议使用以下表结构:

-- 可以根据 --columns 的字段进行调整
CREATE TABLE deadlocks (
  server char(20) NOT NULL,
  ts timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP,
  thread int unsigned NOT NULL,
  txn_id bigint unsigned NOT NULL,
  txn_time smallint unsigned NOT NULL,
  user char(16) NOT NULL,
  hostname char(20) NOT NULL,
  ip char(15) NOT NULL, -- alternatively, ip int unsigned NOT NULL
  db char(64) NOT NULL,
  tbl char(64) NOT NULL,
  idx char(64) NOT NULL,
  lock_type char(16) NOT NULL,
  lock_mode char(1) NOT NULL,
  wait_hold char(1) NOT NULL,
  victim tinyint unsigned NOT NULL,
  query text NOT NULL,
  PRIMARY KEY  (server,ts,thread)
) ENGINE=InnoDB;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
  • server:发生死锁的(源)服务器。
  • ts:上次检测到死锁的日期和时间。
  • thread:GreatSQL线程编号,和SHOW FULL PROCESSLIST中的ID一致。
  • txn_id:InnoDB事务ID。
  • txn_time:发生死锁时事务处于活动状态的时间。
  • user:连接的数据库用户名。
  • hostname:连接的主机。
  • ip:连接的 IP 地址。如果指定--numeric-ip,则将转换为无符号整数。
  • db:发生死锁的库。
  • tbl:发生死锁的表。
  • idx:发生死锁的索引。
  • lock_type:导致死锁的锁上持有的事务的类型。
  • lock_mode:导致死锁的锁的锁定模式。
  • wait_hold:事务是在等待锁还是持有锁。
  • victim:事务是否被选为死可回滚的事务并进行回滚。
  • query:导致死锁的查询。

首先创建上方提供的deadlocks表,也可在命令中加入--create-dest-table自动创建表:

greatsql> CREATE TABLE deadlocks 
-- ......中间省略
Query OK, 0 rows affected (0.06 sec)
1
2
3

将 host1 主机产生的死锁信息保存在 host2 主机 test_db 库下面的 deadlocks 表中:

pt-deadlock-logger h=localhost,P=3306,u=root,p='' --dest h=localhost,P=3307,u=root,p='',D=test_db,t=deadlocks
1

小贴士

因为没有指定--run-time所以该工具会一直在当前窗口运行,如果要转到后台运行可以使用--daemonize

人为制造一个死锁:

session 1 session 2
START TRANSACTION;
UPDATE t1 SET c2 = 'greatsql' WHERE id = 1; START TRANSACTION;
UPDATE t1 SET c2 = 'GreatSQL' WHERE id = 2;
UPDATE t1 SET c2 = 'greatsql' WHERE id = 2;
UPDATE t1 SET c2 = 'GreatSQL' WHERE id = 1;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

查看deadlocks表:

+-----------+---------------------+--------+--------+----------+------+-----------+----+---------+-----+---------+-----------+-----------+-----------+--------+--------------------------------------------+
| server    | ts                  | thread | txn_id | txn_time | user | hostname  | ip | db      | tbl | idx     | lock_type | lock_mode | wait_hold | victim | query                                      |
+-----------+---------------------+--------+--------+----------+------+-----------+----+---------+-----+---------+-----------+-----------+-----------+--------+--------------------------------------------+
| localhost | 2024-03-20 15:12:51 |   1216 |      0 |        8 | root | localhost |    | test_db | t1  | PRIMARY | RECORD    | X         | w         |      1 | UPDATE t1 SET c2 = 'GreatSQL' WHERE id = 1 |
| localhost | 2024-03-20 15:12:51 |   1230 |      0 |       11 | root | localhost |    | test_db | t1  | PRIMARY | RECORD    | X         | w         |      0 | UPDATE t1 SET c2 = 'greatsql' WHERE id = 2 |
+-----------+---------------------+--------+--------+----------+------+-----------+----+---------+-----+---------+-----------+-----------+-----------+--------+--------------------------------------------+
2 rows in set (0.00 sec)
1
2
3
4
5
6
7

deadlocks表中记录了锁的细节、类型、SQL语句,比起直接看SHOW ENGINE INNODB STATUS方便。

§ pt-fk-error-logger

§ 概要

pt-fk-error-logger工具的作用和pt-deadlock-logger差不多,pt-fk-error-logger是记录MySQL/GreatSQL外键错误信息。

用法

pt-fk-error-logger [OPTIONS] [DSN]
1

记录有关给定 DSN 上的外键错误的信息。信息打印到 STDOUT ,也可以通过指定 --dest 保存到表中。除非指定 --run-time--iterations ,否则该工具将永远运行。

§ 选项

该工具所有选项如下

参数 含义
--ask-pass 连接 MySQL/GreatSQL 时提示输入密码
--charset 字符集
--config 读取这个逗号分隔的配置文件列表,如果指定,这必须是命令行上的第一个选项
--daemonize 后台运行
--database 连接到该数据库
--defaults-file 只从给定文件中读取 MySQL/GreatSQL 选项
--dest 用DSN的格式写存储死锁的位置,至少要指定库和表
--help 显示帮助
--host 连接到主机
--interval 检查死锁的频率,如果未指定,将默认永远运行
--iterations 检查死锁的次数,默认情况下,如果没指定,则为无限次数,退出的时间由--run-time来限制
--log 守护进程时将所有输出打印到此文件。
--password 用于连接的密码
--pid 创建给定的 PID 文件
--port 用于连接的端口号
--quiet 不要死锁,仅将错误和警告打印到STDERR
--run-time 退出前要跑多长时间。默认情况下永远运行,每 --interval 秒检查一次死锁。
--set-vars 在这个以逗号分隔的 variable=value 对列表中设置 MySQL/GreatSQL 变量
--socket 用于连接的套接字文件
--user 登录的用户
--version 显示版本
--[no]version-check 版本检查

§ 最佳实践

如果想存储 pt-fk-error-logger 可以提取的有关死锁的所有信息,建议使用以下表结构:

CREATE TABLE foreign_key_errors (
  ts datetime NOT NULL,
  error text NOT NULL,
  PRIMARY KEY (ts)
);
1
2
3
4
5
  • ts:记录时间
  • error:错误描述

将host1主机产生的违反外键约束信息保存在host2主机test_db库下面的foreign_key_errors表中:

pt-fk-error-logger h=localhost,P=3306,u=root,p='',S=/data/GreatSQL01/mysql.sock --dest h=localhost,P=3307,u=root,p='',S=/data/GreatSQL02/mysql.sock,D=test_db,t=foreign_key_errors
1

人为创建违反索引约束:

-- 建t_fk1表
CREATE TABLE `t_fk1` (  
  `id` int unsigned NOT NULL AUTO_INCREMENT,  
  `k` int unsigned NOT NULL DEFAULT '0',  
  `c` char(20) NOT NULL DEFAULT '',  
  `pad` char(20) NOT NULL DEFAULT '',  
  PRIMARY KEY (`id`),  
  KEY `k_2` (`k`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

-- 建t_fk2表
CREATE TABLE `t_fk2` (  
  `id1` int unsigned NOT NULL AUTO_INCREMENT,  
  `id2` int unsigned NOT NULL,  
  PRIMARY KEY (`id1`),  
  KEY `id2` (`id2`),  
  CONSTRAINT `t2_ibfk_1` FOREIGN KEY (`id2`) REFERENCES `t1` (`id`) ON DELETE RESTRICT ON UPDATE CASCADE
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

往t_fk1表插入数据:

greatsql> INSERT INTO t_fk1 VALUES(1,1,'a','a');
greatsql> INSERT INTO t_fk1 VALUES(2,2,'b','b');
greatsql> INSERT INTO t_fk1 VALUES(3,3,'c','c');
1
2
3

往t_fk2表插入数据:

greatsql> INSERT INTO t_fk2 VALUES(5,5);
ERROR 1452 (23000): Cannot add or update a child row: a foreign key constraint fails (`test_db`.`t_fk2`, CONSTRAINT `t2_ibfk_1` FOREIGN KEY (`id2`) REFERENCES `t1` (`id`) ON DELETE RESTRICT ON UPDATE CASCADE)
1
2

查看 foreign_key_errors 表:

greatsql> SELECT * FROM foreign_key_errors\G
*************************** 1. row ***************************
   ts: 2024-03-20 16:21:51
error: 140628737369792 Transaction:
TRANSACTION 21974, ACTIVE 0 sec inserting
mysql tables in use 1, locked 1
3 lock struct(s), heap size 1128, 1 row lock(s), undo log entries 1
MySQL thread id 1235, OS thread handle 140628737369792, query id 90865 localhost root update
insert into t_fk2 values(5,5)
Foreign key constraint fails for table `test_db`.`t_fk2`:
,
  CONSTRAINT `t2_ibfk_1` FOREIGN KEY (`id2`) REFERENCES `t1` (`id`) ON DELETE RESTRICT ON UPDATE CASCADE
Trying to add in child table, in index id2 tuple:
DATA TUPLE: 2 fields;
 0: len 4; hex 00000005; asc     ;;
 1: len 4; hex 00000005; asc     ;;

But in parent table `test_db`.`t1`, in index PRIMARY,
the closest match we can find is record:
PHYSICAL RECORD: n_fields 5; compact format; info bits 0
 0: len 4; hex 00000006; asc     ;;
 1: len 6; hex 000000004339; asc     C9;;
 2: len 7; hex 82000003cb0110; asc        ;;
 3: len 4; hex 000f5bcd; asc   [ ;;
 4: len 17; hex 3139323639362e36393136393235323433; asc 192696.6916925243;;

1 row in set (0.00 sec)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

该表中很清晰的记录了在t_fk2表的id2字段中尝试插入值5,但是根据外键约束t2_ibfk_1,这个值必须在t1表的id字段中存在。

§ pt-mext

§ 概要

并排查看 MySQL/GreatSQL SHOW GLOBAL STATUS 的例子。

用法

pt-mext [OPTIONS] -- COMMAND
1

§ 选项

该工具所有选项如下:

参数 含义
--help 显示帮助
--relative 从前一列中减去每一列
--version 显示版本

§ 最佳实践

$ pt-mext -r -- mysqladmin ext -i10 -c3

Aborted_clients                              84                    0
Aborted_connects                             18                    0
Acl_cache_items_count                         0                    0
Binlog_cache_disk_use                        15                    0
Binlog_cache_use                            118                    0
# ······下方省略
1
2
3
4
5
6
7
8
  • -i10:采集间隔。

  • -c5:采集次数。

  • -r:相对的。

上述命令中会有三次迭代,但只会输出第一次的结果,第二次和第一次相差的结果。意味着这会详细的列出每个变量在这一阶段的一个初始值(第一列)以及每两个采样点的差异值。

上面例子中Aborted_clients中的84是采样的初始值,后面的0是每两个采样点的差异值。

§ pt-query-digest

§ 概要

pt-query-digest 是用于分析 MySQL/GreatSQL 慢查询的一个工具,它可以分析Binlog、General log、Slowlog,也可以通过 SHOWPROCESSLIST 或者通过 tcpdump 抓取的 MySQL/GreatSQL 协议数据来进行分析。

可以把分析结果输出到文件中,分析过程是先对查询语句的条件进行参数化,然后对参数化以后的查询进行分组统计,统计出各查询的执行时间、次数、占比等,可以借助分析结果找出问题进行优化。

用法

pt-query-digest [OPTIONS] [FILES] [DSN]
1

§ 选项

该工具所有选项如下

参数 含义
--ask-pass 连接 MySQL/GreatSQL 时提示输入密码
--attribute-aliases 属性列表别名等
--attribute-value-limit 属性值的健全限制
--charset 字符集
--config 读取这个逗号分隔的配置文件列表,如果指定,这必须是命令行上的第一个选项
--[no]continue-on-error 即使出现错误也继续解析
--[no]create-history-table 如果 --history 表不存在,则创建
--[no]create-review-table 如果 --review 表不存在,则创建它
--daemonize 后台运行
--database 连接到该数据库
--defaults-file 只从给定文件中读取 MySQL/GreatSQL 选项
--embedded-attributes 两个 Perl 正则表达式模式,用于捕获查询中嵌入的伪属性
--expected-range 当数量多于或少于预期时解释项目(默认值为5,10)
--explain 使用此 DSN 运行示例查询的 EXPLAIN 并打印结果
--filter 丢弃此 Perl 代码未返回 true 的事件
--group-by 按事件的哪个属性进行分组
--help 显示帮助
--history 在给定表中保存每个查询类的指标
--host 连接到主机
--ignore-attributes 不要聚合这些属性
--inherit-attributes 如果缺少,则从具有这些属性的最后一个事件继承这些属性
--interval 检查的频率
--iterations 迭代收集和报告周期的次数。如果没指定,则为无限次数,退出的时间由--run-time来限制
--limit 限制输出结果百分比或数量,默认值是20,即输出最慢的20条语句
--log 守护进程时将所有输出打印到此文件
--max-hostname-length 将报告中的主机名删减至此长度
--max-line-length 将行设置长度
--order-by 按此属性和聚合函数对事件进行排序
--outliers 按属性报告异常值
--output 如何格式化并打印查询分析结果
--password 用于连接的密码
--pid 创建给定的 PID 文件
--port 用于连接的端口号
--preserve-embedded-numbers 加密查询时保留数据库/表名称中的数字
--processlist 轮询此 DSN 的进程列表以进行查询,其间有 --interval 睡眠
--progress 将进度报告打印到 STDERR
--read-timeout 等待来自输入的事件这么长时间; 0 永远等待
--[no]report 打印每个 --group-by 属性的查询分析报告
--report-all 报告所有查询,甚至是已经审核过的查询
--report-format 打印查询分析报告的这些部分(rusage,date,hostname,files,header,profile,query_report,prepared)
--report-histogram 绘制该属性值的分布图
--resume 将最后一个文件偏移量(如果有)写入给定的文件名
--review 保存查询类以供以后查看,并且不要报告已查看的类
--run-time 每个 --iterations 运行多长时间,默认永远执行
--run-time-mode 设置 --run-time 值的作用对象
--sample 过滤掉除每个查询的前 N 个出现之外的所有查询
--slave-user 设置用于连接从库的用户
--slave-password 设置用于连接从库的密码
--set-vars 以逗号分隔的 variable=value 对列表中设置 MySQL/GreatSQL 变量
--show-all 显示这些属性的所有值
--since 仅解析比该值更新的查询(解析自该日期以来的查询)
--socket 用于连接的套接字文件
--timeline 显示事件的时间表
--type 要解析的输入类型
--until 截止时间,配合 since 可以分析一段时间内的慢查询
--user 登陆的用户
--variations 报告这些属性值的变化数量
--version 显示版本
--[no]version-check 版本检查
--[no]vertical-format 垂直输出SQL结果
--watch-server 在解析 tcpdump 时要监视哪个服务器 IP 地址和端口(如“10.0.0.1:3306”)(对于 --type tcpdump);所有其他服务器都将被忽略

§ 最佳实践

§ 直接分析慢查询日志

pt-query-digest ./slow.log
1

第一部分

-- 用户时间,系统时间,物理内存占用大小,虚拟内存占用大小
170ms user time, 0 system time, 29.88M rss, 38.17M vsz
-- 执行工具的时间
Current date: Thu Mar 21 10:13:18 2024
-- 主机名
Hostname: myarch
-- 被分析的文件名字
Files: ./slow.log
-- 语句总数量,唯一的语句数量,QPS,并发数
Overall: 119 total, 18 unique, 0.00 QPS, 0.00x concurrency _____________
-- 日志记录时间范围
Time range: 2024-03-08T09:52:08 to 2024-03-20T14:37:23
-- 属性              总计     最小     最大     平均     95%    标准   中位数
Attribute          total     min     max     avg     95%  stddev  median
============     ======= ======= ======= ======= ======= ======= =======
Exec time           122s   189us     44s      1s      1s      6s   384us
Lock time          489us       0   198us     4us     6us    17us     1us
Rows sent          1.10M       0 535.35k   9.44k   1.26k  68.78k   97.36
Rows examine      97.56M     102  35.09M 839.55k 961.27k   4.59M   97.36
Rows affecte           0       0       0       0       0       0       0
Bytes sent       285.10M      56 202.68M   2.40M   9.76M  18.45M   5.45k
Query size        15.50k      30     250  133.39  202.40   52.84  143.84
......下方省略
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
  • unique:唯一查询数量,即对查询条件进行参数化以后,总共有多少个不同的查询。
  • 95%:把所有值从小到大排列,位置位于95%的那个数。
  • median:中位数,把所有值从小到大排列,位置位于中间那个数。

小贴士

如果没有命令hostname可能会导致报错error: Can't exec "hostname"此时下载inetutils即可。

第二部分

Profile
Rank Query ID                            Response time Calls R/Call  V/M   Item
==== =================================== ============= ===== ======= ====  ========
   1 0x4029831C8032DEE4724E42576E2C52A6  83.1656 68.2%     2 41.5828  0.37 SELECT tpch.lineitem
   2 0x6472467F1FD96D847221959F021B8110  22.8429 18.7%     1 22.8429  0.00 SELECT xxl_job_log
   3 0x34BC467D466B794E79C020BEF3BFFE95   6.3289  5.2%     7  0.9041  1.17 SELECT test_index
   4 0x14810CF629251E9A8950ED961EA04448   4.3492  3.6%     6  0.7249  0.06 SELECT test_db.xxl_job_log
1
2
3
4
5
6
7

这部分对查询进行参数化并分组,然后对各类查询的执行情况进行分析,结果按总执行时长,从大到小排序。

  • Response:总响应时间。
  • time:该查询在本次分析中总的时间占比。
  • Calls:执行次数,即本次分析总共有多少条这种类型的查询语句。
  • R/Call:平均每次执行的响应时间。
  • V/M:响应时间Variance-to-mean的比率。
  • Item:查询对象。

第三部分

此部分列出了第一个查询的详细统计结果,列出了执行次数、最大、最小、平均、95%、标准、中位数的统计。

Query 1: 0.02 QPS, 0.92x concurrency, ID 0x4029831C8032DEE4724E42576E2C52A6 at byte 1789
This item is included in the report because it matches --limit.
Scores: V/M = 0.37
Time range: 2024-03-08T09:53:37 to 2024-03-08T09:55:07
Attribute    pct   total     min     max     avg     95%  stddev  median
============ === ======= ======= ======= ======= ======= ======= =======
Count          1       2
Exec time     68     83s     39s     44s     42s     44s      4s     42s
Lock time      2    11us     5us     6us     5us     6us       0     5us
Rows sent      0     273     133     140  136.50     140    4.95  136.50
Rows examine  71  70.19M  35.09M  35.09M  35.09M  35.09M       0  35.09M
Rows affecte   0       0       0       0       0       0       0       0
Bytes sent     0  38.41k  18.81k  19.60k  19.20k  19.60k  567.10  19.20k
Query size     0      98      49      49      49      49       0      49
String:
Databases    test_db
End          2024-03-08... (1/50%), 2024-03-08... (1/50%)
Hosts        localhost
Start        2024-03-08... (1/50%), 2024-03-08... (1/50%)
Users        root
Query_time distribution
  1us
 10us
100us
  1ms
 10ms
100ms
   1s
 10s+  ################################################################
Tables
   SHOW TABLE STATUS FROM `tpch` LIKE 'lineitem'\G
   SHOW CREATE TABLE `tpch`.`lineitem`\G
EXPLAIN /*!50100 PARTITIONS*/
select * from tpch.lineitem where l_suppkey=23045\G
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
  • Exec time:表示查询的执行时间。
  • Lock time:表示查询在等待锁的时间。
  • Rows sent:表示查询返回的行数。
  • Rows examined:表示查询扫描的行数。
  • Rows affected:表示查询影响的行数。
  • Bytes sent:表示查询发送的字节数。
  • Query size:表示查询的大小。
  • Query_time distribution:查询时间的分布,可以看到这个SQL查询执行时间都是10秒以上。
  • Tables:该SQL查询涉及的表。
  • EXPLAIN:查询的SQL语句。

§ 分析指定时间内的查询

分析12小时内的查询:

pt-query-digest --since=12h ./slow.log
1

分析指定时间段内的查询:

pt-query-digest slow.log --since '2024-03-19 00:00:00' --until '2024-03-21 23:59:59'
1

§ 分析指含有查询语句的慢查询

pt-query-digest --filter '$event->{fingerprint} =~ m/^select/i' slow.log
1

§ 分析指定用户的查询

修改 m/^root/i' 中的root换成对应用户即可:

pt-query-digest --filter '($event->{user} || "") =~ m/^root/i' slow.log
1

§ 分析其他日志

分析binlog

分析前要先解析:

mysqlbinlog binlog.000023 > binlog.000023.sql
1

解析后在分析binlog:

pt-query-digest  --type=binlog  binlog.000023.sql > binlog_analysis.log
1

分析general log

pt-query-digest  --type=genlog  general.log > general_analysis.log
1

§ 查询结果存储到表

把查询保存到 query_review 表或 query_review_history 表,先来查看下 query_review 表结构:

CREATE TABLE IF NOT EXISTS query_review (
   checksum     CHAR(32) NOT NULL PRIMARY KEY,
   fingerprint  TEXT NOT NULL,
   sample       TEXT NOT NULL,
   first_seen   DATETIME,
   last_seen    DATETIME,
   reviewed_by  VARCHAR(20),
   reviewed_on  DATETIME,
   comments     TEXT
)
1
2
3
4
5
6
7
8
9
10

把查询保存到 query_review表,使用--create-review-table会自动创建:

pt-query-digest --user=root,-password='' --review h=localhost,D=test_db,t=query_review --create-review-table slow.log
1

§ 分析tcpdump抓取的数据

先使用 tcpdump 抓取数据:

tcpdump -s 65535 -x -nn -q -tttt -i any -c 1000 port 3306 > GreatSQL.tcp.txt
1

在分析tcpdump抓取的数据:

pt-query-digest --type tcpdump GreatSQL.tcp.txt> tcp_analysis.log
1

小贴士

如果没有tcpdump,请手动安装。

扫码关注微信公众号

greatsql-wx